Methoxypoly(ethylene glycol)amine (mPEG-NH2) is critical PEG material for PEGylated drug.
Name | CAS No. | Mn | Number |
mPEG-NH2 | 80506-64-5 | 2,000 | 06020100202 |
3,000 | 06020100203 | ||
5,000 | 06020100206 | ||
10,000 | 06020100209 | ||
12,000 | 06020100210 | ||
20,000 | 06020100212 | ||
30,000 | 06020100213 | ||
40,000 | 06020100215 | ||
50,000 | 06020100221 |
Methoxypoly(ethylene glycol)amine (mPEG-NH2)is formed by a degradable linker connecting PEG polymer chain and theamine, which is reactive with amine on protein. SINOPEG offers mPEG-NH2with molecular weight 2K, 5K, 10K, 20K and 40K Da, other M.W. may be available by custom synthesis. The packaging sizes are available for 1g, 10g and 100g.
Please contact us for bulk and GMP grade PEGs pricing and packaging size.MW 2000 Da, MW 5000 Da, MW 10000 Da, MW 20000 Da, MW 40000 Da are available.
SINOPEGis serving pharmaceutical and medical device companies around the globe, with product presence in various pharmaceutical/device development pipeline (pre-clinical, clinical, and post authorization large scale supply). Our facility is ISO9001 and ISO13485 certified, and is operating according to ICH Q7A guidelines to produce products for pharmaceutical companies.
Please contact us atsales@sinopeg.com for PEG derivatives. Our online catalog or inventory may not listed or have all molecular weights and functional groups, which may be available by custom synthesis.
Please contact us atsales@sinopeg.com for quotation and availability.
Reference:
1. Ai F , Wang N , Zhang X , et al. An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy. Nanoscale. 2018;10(9):4432-4441. doi:10.1039/c7nr06874c
2. Yan J, Wang Y, Jia Y, et al. Co-delivery of docetaxel and curcumin prodrug via dual-targeted nanoparticles with synergistic antitumor activity against prostate cancer. Biomed Pharmacother. 2017;88:374-383. doi:10.1016/j.biopha.2016.12.138
3. Luo CQ, Xing L, Cui PF, et al. Curcumin-coordinated nanoparticles with improved stability for reactive oxygen species-responsive drug delivery in lung cancer therapy. Int J Nanomedicine. 2017;12:855-869. Published 2017 Jan 25. doi:10.2147/IJN.S122678
4. Shen Y, Wu C, Uyeda TQP, et al. Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field. Theranostics. 2017;7(6):1735-1748. Published 2017 Apr 10. doi:10.7150/thno.18352
5. Dong A, Li X, Wang W, et al. ed double hydroxide modified by PEGylated hyaluronic acid as a hybrid nanocarrier for targeted drug delivery. Transactions of Tianjin University, 22(3), 237–246. doi:10.1007/s12209-016-2710-2
6. Zhang H, Liu J, Chen Q, Mi P. Ligand-installed anti-VEGF genomic nanocarriers for effective gene therapy of primary and static tumors. J Control Release. 2020;320:314-327. doi:10.1016/j.jconrel.2020.01.026
7. Zhang X, Ai F, Sun T, Wang F, Zhu G. Multimodal Upconversion Nanoplatform with a Mitochondria-Targeted Property for Improved Photodynamic Therapy of Cancer Cells. Inorg Chem. 2016;55(8):3872-3880. doi:10.1021/acs.inorgchem.6b00020
8. Di Y, Li T, Zhu Z, et al. pH-sensitive and folic acid-targeted MPEG-PHIS/FA-PEG-VE mixed micelles for the delivery of PTX-VE and their antitumor activity. Int J Nanomedicine. 2017;12:5863-5877. Published 2017 Aug 16. doi:10.2147/IJN.S141982
9. Liu J, Ai X, Zhang H, Zhuo W, Mi P. Polymeric Micelles with Endosome Escape and Redox-Responsive Functions for Enhanced Intracellular Drug Delivery. J Biomed Nanotechnol. 2019;15(2):373-381. doi:10.1166/jbn.2019.2693
10. Liu Z, Tang S, Xu Z, et al. Preparation and in vitro evaluation of a multifunctional iron silicate@liposome nanohybrid for ph-sensitive doxorubicin delivery and photoacoustic imaging. J. Nanomaterials. 2015;16(1):1687-4110. doi:10.1155/2015/541763
11. Luo CQ, Zhou YX, Zhou TJ, et al. Reactive oxygen species-responsive nanoprodrug with quinone methides-mediated GSH depletion for improved chlorambucil breast cancers therapy. J Control Release. 2018;274:56-68. doi:10.1016/j.jconrel.2018.01.034
12. Liang S, Chen Y, Zhang S, et al. RhB-encapsulating silica nanoparticles modified with PEG impact the vascular endothelial function in endothelial cells and zebrafish model. Sci Total Environ. 2020;711:134493. doi:10.1016/j.scitotenv.2019.134493
13. Shi, H., Shi, Q., Oswald, J.T. et al. Site-specific PEGylation of Human Growth Hormone by Mutated Sortase A. Chem. Res. Chin. Univ. 34, 428–433 (2018). doi:10.1007/s40242-018-8023-3
14. Zhou JQ, He T, Wang JW. PEGylation of cytochrome c at the level of lysine residues mediated by a microbial transglutaminase. Biotechnol Lett. 2016;38(7):1121-1129. doi:10.1007/s10529-016-2083-6
15. Sun F, Bu Y, Chen Y, Yang F, Yu J, Wu D. An Injectable and Instant Self-Healing Medical Adhesive for Wound Sealing. ACS Appl Mater Interfaces. 2020;12(8):9132-9140. doi:10.1021/acsami.0c01022
16. Shi S, Huang Y, Chen X, Weng J, Zheng N. Optimization of Surface Coating on Small Pd Nanosheets for in Vivo near-Infrared Photothermal Therapy of Tumor [published correction appears in ACS Appl Mater Interfaces. 2016 Nov 16;8(45):31482]. ACS Appl Mater Interfaces. 2015;7(26):14369-14375. doi:10.1021/acsami.5b03106
17. Huang Q, Xu Z, Cai C, et al. Micelles with a Loose Core Self‐Assembled from Coil‐ g ‐Rod Graft Copolymers Displaying High Drug Loading Capacity. Macromolecular Chemistry and Physics. (2020): n. pag. dio:10.1002/macp.202000121
18. Fang Z, Wang C, Yang J, et al. Oxyhaemoglobin saturation NIR-IIb imaging for assessing cancer bolism and predicting the response to immunotherapy. Nat Nanotechnol. 2024;19(1):124-130. doi:10.1038/s41565-023-01501-4
19. Li Y, Chen X, Tong C, et al. Double-Helix Duality: Rods Bow, Toroids Wow in the Nuclease Arena. J Phys Chem Lett. 2025;16(15):3874-3878. doi:10.1021/acs.jpclett.5c00825
20. Lin S, Zhang L, Cui H, et al. Pharmacokinetics modulation in solid tumors through thrombin-embedded nanomedicine. J Nanobiotechnology. 2025;23(1):268. Published 2025 Apr 4. doi:10.1186/s12951-025-03302-4