Industry News
Home /

News

/

Industry News

/Pd nanosheets with their surface coordinated by radioactive iodide as a high-performance theranostic nanoagent for orthotopic hepatocellular carcinoma imaging and cancer therapy
Pd nanosheets with their surface coordinated by radioactive iodide as a high-performance theranostic nanoagent for orthotopic hepatocellular carcinoma imaging and cancer therapy January 12,2024.
Chem Sci. 2018 Apr 12;9(18):4268-4274.  doi: 10.1039/c8sc00104a.  eCollection 2018 May 14.

Pd nanosheets with their surface coordinated by radioactive iodide as a high-performance theranostic nanoagent for orthotopic hepatocellular carcinoma imaging and cancer therapy

Mei Chen 1 2, Zhide Guo 3, Qinghua Chen 4, Jingping Wei 1, Jingchao Li 1, Changrong Shi 3, Duo Xu 3, Dawang Zhou 4, Xianzhong Zhang 3, Nanfeng Zheng 1

Abstract

Radiolabeled nanoparticles (NPs), taking advantage of nanotechnology and nuclear medicine, have shown attractive potential for cancer diagnosis and therapy.  However, the high background signal in the liver and long-term toxic effects of radioisotopes caused by the nonselective accumulation of radiolabeled nanoparticles in organs have become the major challenges.  Here, we report a pH-sensitive multifunctional theranostic platform with radiolabeled Pd nanosheets through a simple mixture of ultra-small Pd nanosheets and radioisotopes utilizing the strong adsorption of 131I and 125I on their surfaces (denoted as 131I-Pd-PEG or 125I-Pd-PEG).  Systematic studies reveal that the labeling efficiency is higher than 98% and the adsorption of radioiodine is more stable in an acidic environment.  In vivo studies further validate the pH-dependent behavior of this platform and the enhanced retention of radioisotopes in tumors due to the acidic microenvironment.  Single photon emission computed tomography (SPECT) images with zero background were successfully achieved in a subcutaneous 4T1 tumor model, an orthotopic LM3 tumor model, and even in a Mst1/2 double-knockout hepatoma model.  Moreover, the application of radiolabeled Pd nanosheets for photoacoustic (PA) imaging, and combined photothermal and radiotherapy was also explored.  Therefore, this study provides a simple and efficient strategy to solve the critical high background issue of radiolabeled nanoparticles and shows enormous potential for clinical applications.

Related products

Abbreviation: mPEG-SH
Name: Methoxypoly(ethylene glycol) thiol

For more product information, please contact us at:

US Tel: 1-844-782-5734
US Tel: 1-844-QUAL-PEG
CHN Tel: 400-918-9898
Email: sales@sinopeg.com

Copyright © XIAMEN SINOPEG BIOTECH CO., LTD. All Rights Reserved.

Home

Products

News

contact