Industry News
Home /

News

/

Industry News

/Rattle-type Au@Cu2-xS hollow mesoporous nanocrystals with enhanced photothermal efficiency for intracellular oncogenic microRNA detection and chemo-photothermal therapy
Rattle-type Au@Cu2-xS hollow mesoporous nanocrystals with enhanced photothermal efficiency for intracellular oncogenic microRNA detection and chemo-photothermal therapy January 15,2024.
Biomaterials. 2018 Mar:158:23-33.   doi: 10.1016/j.biomaterials.2017.12.009.   Epub 2017 Dec 13.

Rattle-type Au@Cu2-xS hollow mesoporous nanocrystals with enhanced photothermal efficiency for intracellular oncogenic microRNA detection and chemo-photothermal therapy

Yu Cao 1, Shuzhou Li 2, Chao Chen 2, Dongdong Wang 1, Tingting Wu 1, Haifeng Dong 3, Xueji Zhang 4

Abstract

The coupling of the localized surface plasma resonance (LSPR) between noble metals of Au, Ag and Cu and semiconductors of Cu2-xE (E = S, Se, Te) opens new regime to design photothermal (PT) agents with enhanced PT conversion efficiency.   However, it is rarely explored on fabricating of engineered dual plasmonic hybrid nanosystem for combinatory therapeutic-diagnostic applications.   Herein, rattle-type Au@Cu2-xS hollow mesoporous nanoparitcles with advanced PT conversion efficiency are designed for cellular vehicles and chemo-photothermal synergistic therapy platform.   The LSPR coupling between the Au core and Cu2-xS shell are investigated experimentally and theoretically to generate a PT conversion efficiency high to 35.2% and enhanced by 11.3% than that of Cu2-xS.   By conjugating microRNA (miRNA) gene probe on the surface, it can realize the intracellular oncogenic miRNA detection.   After loading of anticancer drug doxorubicin into the cavity of the Au@Cu2-xS, the antitumor therapy efficacy is greatly enhanced in vitro and in vivo due to the NIR photoactivation chemo- and photothermal synergistic therapy.   The rattle-type metal-semiconductor hollow mesoporous nanostructure with efficient LSPR coupling and high cargo loading capability will be beneficial to future design of LSPR-based photothermal agents for a broad range of biomedical application.

Keywords: Chemo-photothermal therapy;   Localized surface plasma resonance coupling;   MicroRNA detection;   Rattle-type Au@Cu(2−x)S;   Theranostic platform.

Related products

Abbreviation: mPEG-SH
Name: Methoxypoly(ethylene glycol) thiol

For more product information, please contact us at:

US Tel: 1-844-782-5734
US Tel: 1-844-QUAL-PEG
CHN Tel: 400-918-9898
Email: sales@sinopeg.com

Copyright © XIAMEN SINOPEG BIOTECH CO., LTD. All Rights Reserved.

Home

Products

News

contact