Industry News
  • An Integrated Approach to Developing Next-Generation Genomic Medicines
    An Integrated Approach to Developing Next-Generation Genomic Medicines August 5,2022.
    Few dispute that the rapid development and approval of two mRNA vaccines against COVID-19 was an unmitigated success, or that the evolving field of gene therapy has delivered multiple successful treatments for a range of rare diseases. Still, genomic medicines is a field that’s ripe for further innovation, in areas ranging from the development of improved delivery vehicles to the streamlining of manufacturing.   Three areas of genomic medicines could benefit greatly from an integrated approach to development: gene editing, gene therapy and mRNA medicines. All of these modalities hold great potential in the development of innovative therapies to treat cancer, autoimmune disease, rare inherited diseases and more. Engaging partners early in the development process is critical to assembling cutting-edge tools to enable efficient end-to-end development and manufacturing.   Customizing gene editing for improved efficiency CRISPR gene editing is being developed as a treatment for a range of applications, including CAR-T cells for cancer, gene-edited stem cells to treat diabetes and ex-vivo gene editing to treat the blood disorder beta thalassemia.   Integrated DNA Technologies (IDT)* can customize guide RNAs for common CRISPR research applications, as well as emerging gene-editing approaches like prime editing and research using the Cas13 enzyme. IDT also offers the Alt-R™ CRISPR-Cas9 System with the HiFi CRISPR-Cas9 nuclease, allowing for more precise gene editing with less of the off-target activity that can be a concern in gene editing.   Aldevron offers additional research-grade and GMP versions (SpyFiTM Cas9 Nuclease), which can help accelerate experimental therapies. Aldevron has partnered with external partners as well and can offer a full library of novel CRISPR nucleases to qualified customers, such as Eureca-V™ Nuclease, the wild-type MAD7™ CRISPR Type-V nuclease from Inscripta.   Improving the delivery of gene therapy Lipid nanoparticles (LNPs) are widely used to deliver mRNA, CRISPR components and other nucleic acids into cells, but developing the LNP chemistry and process is challenging. Precision NanoSystems (PNI) has advanced technologies that can ease the process of developing and manufacturing LNPs. Its GenVoy Delivery Platform includes a novel lipid library and LNP reagents optimized for key applications including vaccines, gene editing and cell therapies. And researchers can use PNI’s desktop NanoAssemblr® platform with NxGen™ microfluidics to make well-formed, stable LNPs using a production process that is scalable from small batch discovery research to GMP production.   The viral vectors used to deliver gene and cell therapies are also in high demand, intensifying the need for technologies that can ease development and manufacturing. Aldevron offers a range of plasmids essential for the development of viral vectors. And with the help of some key partnerships, Danaher’s life sciences compan...
    View More
  • A circular mRNA vaccine prototype producing VFLIP-X spike confers a broad neutralization of SARS-CoV-2 variants by mouse sera
    A circular mRNA vaccine prototype producing VFLIP-X spike confers a broad neutralization of SARS-CoV-2 variants by mouse sera July 29,2022.
    Next-generation COVID-19 vaccines are critical due to the ongoing evolution of SARS-CoV-2 virus and rapid waning duration of the neutralizing antibody response against current vaccines. The mRNA vaccines mRNA-1273 and BNT162b2 were developed using linear transcripts encoding the prefusion-stabilized trimers (S-2P) of the wildtype spike, which have shown a reduced neutralizing activity against the variants of concern B.1.617.2 and B.1.1.529. Recently, a new version of spike trimer, termed VFLIP (five (V) prolines, Flexibly-Linked, Inter-Protomer disulfide) was developed. Based on the original amino acid sequence of the wildtype spike, VFLIP was genetically engineered by using five proline substitutions, a flexible cleavage site amino acid linker, and an interprotomer disulfide bond. It has been suggested to possess native-like glycosylation, and greater pre-fusion trimeric stability as opposed to S-2P. Here, we report that the spike protein VFLIP-X, containing six rationally substituted amino acids to reflect emerging variants (K417N, L452R, T478K, E484K, N501Y and D614G), offers a promising candidate for a next-generation SARS-CoV-2 vaccine. Mice immunized by a circular mRNA (circRNA) vaccine prototype producing VFLIP-X had detectable neutralizing antibody titers for up to 7 weeks post-boost against SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs). In addition, a balance in TH1 and TH2 responses was achieved by immunization with VFLIP-X. The researchers's results indicate that the VFLIP-X delivered by circRNA induces humoral and cellular immune responses, as well as broad neutralizing activity against SARSCoV-2 variants. The study used the following products from SINOPEG: ionizable lipidoid SM-102 (Sinopeg), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC, Sinopeg), cholesterol (Sinopeg), 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG 2000, Sinopeg) A circular mRNA vaccine prototype producing VFLIP-X spike confers a broad neutralization of SARS-CoV-2 variants by mouse sera, Antiviral Research, Volume 204, 2022, 105370, ISSN 0166-3542, https://doi.org/10.1016/j.antiviral.2022.105370. (https://www.sciencedirect.com/science/article/pii/S0166354222001395)
    View More
  • A bioengineered arginine-depleting enzyme as a long-lasting therapeutic agent against cancer
    A bioengineered arginine-depleting enzyme as a long-lasting therapeutic agent against cancer July 15,2022.
    L-Arginine (L-Arg) depletion has attracted great attention in cancer therapy. Although two types of arginine-depleting enzymes, arginine deiminase (ADI) and human arginase I, are undergoing clinical trials, random site of PEGylation, low efficacy of heavy metal as co-factor, and immunogenicity limit the performance of these drugs and cause difficulty in a homogeneous production. Here we screened ten catalytic metal ions and have successfully produced a site-specific mono-PEGylated human arginase I mutant by conjugating the Cys45 residue to PEG-maleimide to minimize the decrease in activity and produce a homogeneous product. The catalytic efficiency trend of metal ion–enriched human arginase I mutant (HAI) was Co2+ > Ni2+ ≫ Mn2+. The overall kcat/KM values of Co-HAI and Ni-HAI were higher than Mn-HAI by ~ 8.7- and ~ 5.2-folds, respectively. Moreover, the results of enzyme kinetics and circular dichroism spectrometry demonstrated that the 20 or 40 kDa linear and branched PEG attached on the HAI surface did not affect the enzyme activity and the protein secondary structures. In vitro studies showed that both Co-HAI-PEG20L and Ni-HAI-PEG20L inhibited the growth of eight types of cancer cell lines. The pharmacodynamic study in mice demonstrated that the i.p. administration of Co-HAI-PEG20L at 13 mg/kg and Ni-HAI-PEG20L at 15 mg/kg was able to maintain a L-Arg level below its detection limit for over 120 h after one injection. The body weights of mice could return to normal levels within 5 days after injection, showing that the doses were well-tolerated. Therefore, both the Ni-HAI-PEG20L and Co-HAI-PEG20L are promising candidates for cancer therapy. SINOPEG can supply linear PEG-maleimide: Chung S F ,  Kim C F ,  Tam S Y , et al. A bioengineered arginine-depleting enzyme as a long-lasting therapeutic agent against cancer[J]. Applied Microbiology and Biotechnology, 2020, 104(6). https://doi.org/10.1007/s00253-020-10484-4
    View More
  • Plant-derived cholesterol from SINOPEG
    Plant-derived cholesterol from SINOPEG July 6,2022.
    Plant-derived cholesterol is the most important raw material component in mRNA vaccine production and gene therapy. As one of the key functional excipients of lipid nanoparticles (LNPs), cholesterol plays a role in mediating LNP endocytosis as well as stabilizing the LNP structure (cholesterol helps increase the fluidity or stiffness of cell membranes and the addition of cholesterol improves the stability of nanoparticles). Meanwhile, with the rapid development of related research, lipid-based drug delivery systems are becoming increasingly important in a wider range of therapeutic areas, including vaccines for infectious diseases, cancer immunotherapy, etc. SINOPEG supplies to the market plant-derived cholesterol products of non-animal origin without genetic risk, eliminating concerns about the risk of animal-derived cholesterol carrying animal viruses, and can be used in high-end formulation excipients: small molecule liposomal drugs, nucleic acid drugs, mRNA vaccines and non-animal-derived cell culture media for protein-based drugs.
    View More
  • MRNA vaccine | LNP delivery system technology introduction and excipients supply
    MRNA vaccine | LNP delivery system technology introduction and excipients supply October 28,2021.
    LNP delivery system The major COVID-19 vaccine technology routes currently under development worldwide include inactivated vaccines, mRNA vaccines, adenovirus vaccines and recombinant protein vaccines. As a new vaccine technology in the market, mRNA vaccine is also one of the most important COVID-19 vaccines in the world at present. As a new technology, why can mRNA vaccine be widely administered around the world? One important reason is that it has a very high effective protection rate. The two available mRNA vaccines have an effective protection rate of more than 90%, and BioNTech's mRNA vaccine, produced in collaboration with Pfizer, has an effective protection rate of 95%.Since vaccination began, the daily positive rate in the United States has dropped from 20 percent to 1 to 2 percent. MRNA transmits the genetic information for producing an antigen to the cells that make the protein. These cells then present the antigen to their surfaces, triggering the specific immune response needed. Eventually, when a virus invades, the immune system recognizes specific antigens and quickly and specifically attacks the virus to prevent infection. MRNA technology can not only be used as a preventive vaccine to prevent the spread of infectious diseases, but also as a therapeutic drug to treat some serious diseases, such as cancer and AIDS, due to its ability to spontaneously stimulate human immunity. MRNA has large molecular weight, strong hydrophilicity and high biological activity, but its single chain structure makes it extremely unstable and easy to be degraded, and delivery through the membrane with negative charge on the surface is also difficult. MRNA must enter the cell to encode antibodies, and the enzyme degradation and cell membrane barrier in the process of entering the cell are the biggest challenges that affect its delivery efficiency and transfection efficiency. Special modification or package delivery systems are required to achieve intracellular expression of mRNA. At present, Lipid nanoparticle (LNP) is commonly used as a carrier to deliver mRNA .Lipid nanoparticles mainly contain four components: ionizable lipids, neutral helper lipids, cholesterol, and PEGylated lipid. The neutral helper lipids are usually saturated phospholipids, which support the formation of the lamellar lipid bilayer and stabilize its structure arrangement. Cholesterol had strong membrane fusion, which promoted the intracellular uptake of mRNA and cytoplasmic entry. Pegylated lipids are located on the surface of lipid nanoparticles, improving their hydrophilicity and avoiding rapid removal by the immune system, preventing particle aggregation and increasing stability. The most critical excipients are ionizable cationic lipids, which are decisive factors in the efficiency of mRNA delivery and transfection. Mechanism of LNP mRNA delivery: before entering cells, cationic lipids can realize electrostatic complexation with negatively charged mRNA molecules to form complex...
    View More
  • LNP Application: Gene Editing Therapy
    LNP Application: Gene Editing Therapy October 12,2021.
    Lipid nanoparticles (LNP) can play an important role in gene editing therapy. IntelliaTherapeutics and Regeneron recently announced that their co-development program, ntra-2001, a systemic CRISPR/Cas9 therapy, has achieved positive results in a phase I clinical trial. A single dose of NTLA2001 resulted in an average 87% decrease in serum transthyroxine protein level (TTR), with a maximum reduction of 96% at day 28.CRISPR/Cas9 is a gene-editing tool that makes permanent, precisely targeted changes to a patient's chromosome and fixes potential genetic mutations.Ntra-2001 is a CRISPR/ CAS9-based treatment for hereditary transthyroxine protein-mediated amyloidosis with polyneuropathy (ATTRV-PN). According to Intellia Therapeutics, NTRA-2001 is a targeted delivery of LNP in humans that selectively knocks out disease-causing genes and restores necessary genetic function through targeted insertion. Three of the six patients treated in the Phase I trial received a dose of 0.1mg/kg ntLA-2001 and the other three received a dose of 0.3mg/kg NTLA2001.At day 28, TTR decreased by an average of 52% in patients receiving 0.1mg/kg and 87% in patients receiving 0.3mg/kg, with a 97% reduction in one patient. As revealed in IntelliaTherapeutics' patent, LNP contains amine lipids for encapsulation and in vivo escape, neutral and helper lipids for stabilization, and cloaking lipids. In general, LNPS used on CRISPR/Cas9 include DSPC, cholesterol, PE2K-DMG and other liposomes, which are mostly similar to those used for LNPS of mRNA vaccines. XIAMEN SINOPEG BIOTECH CO., LTD. has been developing DDS sustained-release system for more than ten years, and has strong technical reserves and experienced quality team. The high-quality polyethylene glycol derivatives developed and produced by the company have been successfully applied in the long-acting modification of PEG proteins, peptides and three types of medical devices. We also supply high purity fatty acid side chain to the market for peptide modification. In recent years, SINOPEG has turned to polyethylene glycol phospholipid, polyethylene glycol block copolymer and other high-end complex preparations, and has carried out a number of projects with domestic leading pharmaceutical enterprises. Interested friends can contact us through the following ways: US Tel: 1-844-782-5734 CHN Tel: 400-918-9898 Email: sales@sinopeg.com Reference 1. Intellia Therapeutics. (2021).Source: retrieve Intellia Therapeutics: https://www.intelliatx.com/crisprcas9/types-of-edits-2/ 2.IntelliaTherapeutics(NTLA.us) and Regentium (RegN.us) announce the results of the first CRISPR clinical trial.Retrieve source: baidu: https://baijiahao.baidu.com/s?id=1703680441595581467&wfr=spider&for=pc
    View More
  • Three-dimensional (3D) Culture of Tumor Cell Lines
    Three-dimensional (3D) Culture of Tumor Cell Lines June 25,2021.
    Despite the three-dimensional structure of tissues in vivo, the researches on the structures, functions and pathology of human tissues frequently relies on the two-dimensional (2D) model in vitro and animal model. Since the structure of monolayer in vitro model is quite different from the cell microenvironment in vivo, cell behaviors and functions, such as cell–cell interaction and cell-matrix interaction, are greatly affected. Moreover, animal model often fail to repeat the human characteristic because of species differences. Three-dimensional (3D) culture of tumor cell lines has been advocated as the alternative. It is simple and practicable and has the advantage of simulating the cell microenvironment in vivo. Matrices for 3D cell culture mimic one or more properties of the extracellular matrix (ECM) and tumor microenvironment in vivo. The 3D cell culturing matrices are generally composed of porous structures with diameter less than 300 nm, which can provide enough space for the growth of cells. The cancer cells can form 3D aggregates or spheroids inside the matrix. According to the main component, 3D cell culture matrices can be divided into two main categories: matrix based on natural materials and matrix based on synthetic materials. Matrices based on natural materials can provide a biological environment, but the mechanical performance of materials is commonly poor and the batch-to-batch discrepancy cannot be completely eliminated. Natural materials are usually used to form hydrogel composites. Synthetic scaffolds are polymers like Polyethylene glycol (PEG), Polylactide (PLA), Poly(lactide-co-glycolide) (PLGA/PLG) which are biodegradable and easy to reproduce. Among these materials, the thermogelling synthetic copolymer hydrogels with a sol-gel transition exhibit lower critical solution temperature (LCST) behavior, which is meaningful for a 3D cell culturing matrix. When the sol gel transition temperature of smart hydrogel is between 5℃ and 37℃, the matrix has advantages in further separation of materials and cell aggregates. Hydrogels have received extensive attention in tissue engineering and 3D cell culture, owing to their inherent properties such as flexible matrix, high water content, and responsive network structures. Hydrogels can be formed both chemically and physically. PEG hydrogels are excellent candidates as biomaterials because of their potential for incorporating both biophysical and biochemical cues and their prevention of non-specific protein adsorption, biocompatibility and FDA approval for use in humans. Thermo-sensitive hydrogel based on PLGA-PEG-PLGA tri-block copolymers has been used for delivery of proteins and water-insoluble drugs. The proper LCST and good biocompatibility of PLGA-PEG-PLGA tri-block copolymers make it a good choice for in vitro cell culture matrix. References 1. Caldwell A. S., Aguado B. A., Anseth K. S. Designing Microgels for Cell Culture and Controlled Assembly of Tissue Microenvironments. Adv Fu...
    View More
  • A novel core-shell nano drug delivery system: Tumor inhibition rate up to 98%
    A novel core-shell nano drug delivery system: Tumor inhibition rate up to 98% June 1,2021.
    Cancer remains one of the most common diseases that is a threat to human health. Currently, chemotherapy is an important and indispensable strategy for treating cancer besides surgical treatment and radiotherapy. Thus, it has attracted a number of pharmaceutical researchers for the discovery and development of new anticancer drugs. Unfortunately, approximately 90% of drug candidate molecules in the discovery pipeline are poorly water soluble. Poor solubility can elicit low oral bioavailability and insufficient efficacy in vivo, and make intravenous (IV) administration challenging. Nanotechnology-based drug delivery systems, such as drug nanocrystals (NCs) and liposomes have enabled in improving the solubility and/or attained targeted delivery via the enhanced permeability and retention (EPR) effect, and/or specific ligand-mediated tumor-targeting effect. Liposome is one of the most developed nanomedicines, high stability and flexible surface modification/functionalization, have been widely used in the field of drug development. Hydrophobic drugs are mainly entrapped in the liposomes by embedding in the lipid bilayers, which usually results in a low drug loading capacity that challenges their clinical transformation. In contrast, drug NCs, a nanoscale carrier-free colloidal delivery system with a theoretical drug loading capacity of up to 100%, are quite promising for poorly water-soluble drugs. However, drug NCs still face major challenges in their stability and targeted delivery. Recently, researchers from the Chinese Academy of Sciences present a novel drug delivery strategy, called nanocrystal@liposome (NC@Lipo), which integrates drug nanocrystals into the hydrophilic inner cores of liposomes and forms a hybrid core (nanocrystal)-shell (liposome) drug delivery system, merging the advantages of liposomes and drug nanocrystals to overcome these issues,for the targeted delivery of poorly watersoluble drugs. The performance of the proposed NC@Lipo delivery system was demonstrated on the drug candidate CHMFL-ABL-053 (053), which was discovered by their group. Three different 053-nanodrugs, namely 053-NC, 053-NC@PEG-Lipo, and 053-NC@FA-Lipo, were fabricated for in vitro and in vivo evaluation. In conclusion, as a proof of concept, this study showed that NC@Lipo might be a potential strategy for designing nanocrystal or liposome-based drug delivery systems with high colloidal stability, high drug loading, functionalized surface, and enhanced biological effects (including PK profile, tumor cell targeting, and in vivo antitumor efficacy). Additionally, this work may promote the development of more efficient liposome-based formulations for the delivery of poorly water-soluble drugs for commercial and clinical applications. 1. Title:Nanocrystal-loaded liposome for targeted delivery of poorly water-soluble antitumor drugs with high drug loading and stability towards efficient cancer therapy 2. Author: Huamin Liang, Fengming Zou, Qingwang Liu, Beilei Wang,...
    View More
first page 11 12 13 14 15 last page

A total of 15 pages

Copyright © XIAMEN SINOPEG BIOTECH CO., LTD. All Rights Reserved.

Home

Products

News

contact