Industry News
  • The immobilization of antibiotic-loaded polymeric coatings on osteoarticular Ti implants for the prevention of bone infections
    The immobilization of antibiotic-loaded polymeric coatings on osteoarticular Ti implants for the prevention of bone infections December 30,2022.
    Biomater Sci. 2017 Oct 24;5(11):2337-2346. doi: 10.1039/c7bm00693d. The immobilization of antibiotic-loaded polymeric coatings on osteoarticular Ti implants for the prevention of bone infections Dan Li, Pengfei Lv, Linfeng Fan, Yaoyi Huang, Fei Yang, Xifan Mei, Decheng Wu Abstract Implant-associated infections in orthopaedic surgeries are very critical as they may hinder bone healing, cause implant failure and even progress to osteomyelitis. Drug-eluting implants for local delivery of antibiotics at surgical sites are thought to be promising in preventing infections. Herein, the antibiotic vancomycin was encapsulated in a poly(ethylene glycol) (PEG)-based hydrogel film that was covalently bound to Ti implants and subsequently covered by a PEG-poly(lactic-co-caprolactone) (PEG-PLC) membrane. Additionally, crosslinked starch (CSt) was mixed with the hydrogel because its porous microstructure is able to inhibit hydrogel swelling and thus slow down drug release. The release behavior could be regulated by the drug loading and the coating thickness. The vancomycin-loaded Ti implants showed no initial burst release, offering a sustained drug release for nearly 3 weeks in vitro and more than 4 weeks in vivo. In a rabbit model of S. aureus infection, the implants with a 4 mg vancomycin loading significantly reduced the inflammatory reaction and exhibited a good antimicrobial capability. The immobilization of the antibiotic-loaded polymeric coatings on orthopaedic implants can offer a sustainable drug release with no initial burst release and maintain an effective concentration for a longer time, so it is expected to be an effective strategy to treat and prevent local bone infections. Related products Abbreviation: 4-arm PEG-SH Name: 4-arm Poly(ethylene glycol) thiol For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • Injectable and Self-Healing Hydrogel with Anti-Bacterial and Anti-Inflammatory Properties for Acute Bacterial Rhinosinusitis with Micro Invasive Treatment
    Injectable and Self-Healing Hydrogel with Anti-Bacterial and Anti-Inflammatory Properties for Acute Bacterial Rhinosinusitis with Micro Invasive Treatment December 29,2022.
    Adv Healthc Mater. 2020 Oct;9(20):e2001032. doi: 10.1002/adhm.202001032. Epub 2020 Sep 9. Injectable and Self-Healing Hydrogel with Anti-Bacterial and Anti-Inflammatory Properties for Acute Bacterial Rhinosinusitis with Micro Invasive Treatment Zhengming Chen, Zhengwei Cai, Chengjing Zhu, Xianmin Song, Yanghua Qin, Minhui Zhu, Tao Zhang, Wenguo Cui, Haihong Tang, Hongliang Zheng Abstract Systemic antibiotic therapy is the main treatment for acute bacterial rhinosinusitis (ABRS). However, this treatment often causes side effects of dizziness, diarrhea, and drug resistance. In this study, a new polyethylene glycol hydrogel (PEG-H) treatment model is developed to achieve sustained release of drugs at the locality while avoiding those adverse effects. The PEG-H is composed of 4-arm-PEG-SH and silver ions through a high affinity and dynamic reversible coordination bond between the thiol and silver ion. In the initial test, PEG-H is loaded with Clarithromycin (CAM-Lips@Hydrogel) or Clarithromycin and Budesonide liposomes (CAM+BUD-Lips@Hydrogel). The results show that PEG-H maintains the characteristics of self-healing, biodegradability, moderate swelling rate, injectibility and sustained drug release. In in vivo studies, the hydrogel is injected into the maxillary sinus of ABRS rabbit models. In both a single or combined load, the hydrogel not only plays an effective role as an anti-bacterial, but also inhibits inflammatory response of local sinus mucosa. In addition, no other side effects are observed in the ABRS rabbit model through behavioral observation and drug sensitivity tests. Therefore, the injectable self-healing hydrogel with anti-bacterial and anti-inflammatory properties provides a new micro invasive therapeutic method for the clinical treatment of ABRS. Keywords: acute bacterial rhinosinusitis; anti-bacterial properties; anti-inflammation properties; micro-invasive drug delivery; self-healing hydrogels. Related products Abbreviation: 4-arm PEG-SH Name: 4-arm Poly(ethylene glycol) thiol For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • In situ chemically crosslinked injectable hydrogels for the subcutaneous delivery of trastuzumab to treat breast cancer
    In situ chemically crosslinked injectable hydrogels for the subcutaneous delivery of trastuzumab to treat breast cancer December 28,2022.
    Acta Biomater. 2019 Mar 1;86:280-290. doi: 10.1016/j.actbio.2019.01.003. Epub 2019 Jan 5. In situ chemically crosslinked injectable hydrogels for the subcutaneous delivery of trastuzumab to treat breast cancer Yu-Wen Lo, Ming-Thau Sheu, Wen-Hsuan Chiang, Ya-Ling Chiu, Chia-Mu Tu, Wen-Yu Wang, Ming-Hsi Wu, Yu-Cheng Wang, Maggie Lu, Hsiu-O Ho Abstract Recently, novel approaches for the delivery of therapeutic antibodies have attracted much attention, especially sustained release formulations. However, sustained release formulations capable of carrying a high antibody load remain a challenge for practical use. In this study, a novel injectable hydrogel composed of maleimide-modified γ-polyglutamic acid (γ-PGA-MA) and thiol end-functionalized 4-arm poly(ethylene glycol) (4-arm PEG-SH) was developed for the subcutaneous delivery of trastuzumab. γ-PGA-MA and 4-arm PEG-SH formed a hydrogel through thiol-maleimide reactions, which had shear-thinning properties and reversible rheological behaviors. Moreover, a high content of trastuzumab (>100 mg/mL) could be loaded into this hydrogel, and trastuzumab demonstrated a sustained release over several weeks through electrostatic attraction. In addition, trastuzumab released from the hydrogel had adequate stability in terms of its structural integrity, binding bioactivity, and antiproliferative effect on BT-474 cells. Pharmacokinetic studies demonstrated that trastuzumab-loaded hydrogel (Her-hydrogel-10, composed of 1.5% γ-PGA-MA, 1.5% 4-arm PEG-SH, and 10 mg/mL trastuzumab) and trastuzumab/Zn-loaded hydrogel (Her/Zn-hydrogel-10, composed of 1.5% γ-PGA-MA, 1.5% 4-arm PEG-SH, 5 mM ZnCl2, and 10 mg/mL trastuzumab) could lower the maximum plasma concentration (Cmax) than the trastuzumab solution. Furthermore, Her/Zn-hydrogel-10 was better able to release trastuzumab in a controlled manner, which was ascribed to electrostatic attraction and formation of trastuzumab/Zn nanocomplexes. In a BT-474 xenograft tumor model, Her-hydrogel-10 had a similar tumor growth-inhibitory effect as that of the trastuzumab solution. By contrast, Her/Zn-hydrogel-10 exhibited a superior tumor growth-inhibitory capability due to the functionality of Zn. This study demonstrated that this hydrogel has potential as a carrier for the local and systemic delivery of proteins and antibodies. STATEMENT OF SIGNIFICANCE: Recently, novel sustained-release formulations of therapeutic antibodies have attracted much attention. However, these formulations should be able to carry a high antibody load owing to the required high dose, and these formulations remain a challenge for practical use. In this study, a novel injectable chemically cross-linked hydrogel was developed for the subcutaneous delivery of trastuzumab. This novel hydrogel possessed ideal characteristics of loading high content of trastuzumab (>100 mg/mL), sustained release of trastuzumab over several weeks, and maintaining adequate stability of trastuzumab. In vivo studies demonstra...
    View More
  • Dopamine-assisted fixation of drug-loaded polymeric multilayers to osteoarticular implants for tuberculosis therapy
    Dopamine-assisted fixation of drug-loaded polymeric multilayers to osteoarticular implants for tuberculosis therapy December 19,2022.
    Biomater Sci. 2017 Mar 28;5(4):730-740. doi: 10.1039/c7bm00042a. Dopamine-assisted fixation of drug-loaded polymeric multilayers to osteoarticular implants for tuberculosis therapy Dan Li, Litao Li, Yunlong Ma, Yaping Zhuang, Dawei Li, Hong Shen, Xing Wang, Fei Yang, Yuanzheng Ma, Decheng Wu Abstract Currently, the major issues in the treatment of osteoarticular tuberculosis (TB) after implant placement are low drug concentration at the infected focus and drug resistance resulting from the long-term chemotherapy. The application of drug-loaded polymeric multilayers on implantable devices offers a promising solution to the problems. Herein, a poly(ethylene glycol)-based hydrogel film embedded with isoniazid (INH)-loaded alginate microparticles was fixed to Ti implants via adhesive polydopamine, subsequently capped by poly(lactic-co-glycolic acid) membranes for the sustained and localized delivery of the anti-TB drug. The antibacterial efficacy of the released INH was confirmed by a 4.5 ± 0.8 cm inhibition zone formed in the fourth week after inoculation of Mycobacterium tuberculosis. The INH-loaded Ti implants showed no toxicity to the osteoblast cell and provided a consistent drug release for nearly one week in vitro. The release profile in vivo showed a high local concentration and low systemic exposure. The local INH concentration could be kept higher than its minimum inhibitory concentration over a period of 8 weeks, which proves that it is a promising strategy to improve the severe osteoarticular TB treatment. Related products Abbreviation: 4-arm PEG-OH Name: 4-arm Poly(ethylene glycol) For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • A Cut-and-Weld Process to 3D Architectures from Multiresponsive Crosslinked Liquid Crystalline Polymers
    A Cut-and-Weld Process to 3D Architectures from Multiresponsive Crosslinked Liquid Crystalline Polymers December 16,2022.
    Small. 2019 Apr;15(16):e1900110. doi: 10.1002/smll.201900110. Epub 2019 Mar 26. A Cut-and-Weld Process to 3D Architectures from Multiresponsive Crosslinked Liquid Crystalline Polymers Xiaoxiong Zheng, Song Guan, Chen Zhang, Ting Qu, Wei Wen, Yongbin Zhao, Aihua Chen Abstract Crosslinked liquid crystalline polymers (CLCPs) have garnered extensive attention in recent years for their significant values in the design of light-driven soft actuators. However, poor processabilities due to the insoluble and infusible crosslinked networks prevent their practical applications severely. In this study, a weldable azobenzene-containing CLCP is designed with photo- and humidity-responsive actuations, which enables a cut-and-weld process to 3D CLCP architectures. The tensile properties and stability are almost unchanged after welding, much better than those of the films pasted by common adhesive tapes. Meanwhile, the mechanisms of the welding process are clarified on the base of surface hydrogen bonding and further crosslinking. By taking advantage of the cut-and-weld process, a 3D "claw" integrated into a robotic arm is realized for grabbing millimeter-scale objects by remote control. This work enhances significantly not only the processability of CLCP films but also the utilization of leftover pieces, which provides an efficient approach to create functional 3D structures from film precursors for the potential application in the smart materials. Keywords: azobenzene; cut-and-weld; humidity-responsive; liquid crystalline polymers; photoresponsive. Related products Abbreviation: 4-arm PEG-OH Name: 4-arm Poly(ethylene glycol) For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • Bone Marrow Mesenchymal Stem Cells Encapsulated in a Hydrogel System via Bioorthogonal Chemistry for Liver Regeneration
    Bone Marrow Mesenchymal Stem Cells Encapsulated in a Hydrogel System via Bioorthogonal Chemistry for Liver Regeneration December 14,2022.
    ACS Appl Bio Mater. 2019 Jun 17;2(6):2444-2452. doi: 10.1021/acsabm.9b00156. Epub 2019 May 15. Bone Marrow Mesenchymal Stem Cells Encapsulated in a Hydrogel System via Bioorthogonal Chemistry for Liver Regeneration Yajie Zhang, Yue Zan, Hong Chen, Zhili Wang, Tianyu Ni, Min Liu, Renjun Pei Abstract Liver tissue engineering is going to be an effective treatment for end-stage liver disease. In this work, we distributed bone marrow mesenchymal stem cells (BMSCs) into a fast-forming hydrogel system to develop a liver-mimicking construct for liver regeneration. The advantage of this hydrogel system was that this BMSC-encapsulating hydrogel could be formed via a bioorthogonal reaction between 2-cyanobenzothiazole and cysteine within several seconds. Thereafter, we explored the morphology, biocompatibility, and expressions of hepatic differentiation markers of this hydrogel system. These results illustrated that this system could provide a suitable niche for BMSC proliferation and differentiation, which could aid in future biomedical research of liver regeneration. Keywords: BMSC-encapsulating; bioorthogonal reaction; fast-forming hydrogel; liver regeneration; tissue engineering. Related products Abbreviation: 4-arm PEG-NH2 Name: 4-arm Poly(ethylene glycol) amine Abbreviation: 4-arm PEG-CM Name: 4-arm Poly(ethylene glycol) carboxylic acid For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • Efficient nanobiocatalytic systems of nuclease P1 immobilized on PEG-NH2 modified graphene oxide: effects of interface property heterogeneity
    Efficient nanobiocatalytic systems of nuclease P1 immobilized on PEG-NH2 modified graphene oxide: effects of interface property heterogeneity December 12,2022.
    Colloids Surf B Biointerfaces. 2016 Sep 1;145:785-794. doi: 10.1016/j.colsurfb.2016.05.074. Epub 2016 May 27. Efficient nanobiocatalytic systems of nuclease P1 immobilized on PEG-NH2 modified graphene oxide: effects of interface property heterogeneity Wei Zhuang, Linjiao He, Jiahua Zhu, Jianwei Zheng, Xiaojing Liu, Yihui Dong, Jinglan Wu, Jingwei Zhou, Yong Chen, Hanjie Ying Abstract The use of graphene oxide (GO) nanosheets for functional enzyme support has attracted intensive interest owing to their unique planar structure and intriguing physical and chemical properties. However, the detailed effects of the interface properties of GO and its functionalized derivatives on active biomolecules are not well understood. We immobilize nuclease P1, a common industrial nucleic acid production enzyme, on pristine and amino poly(ethylene glycol) (PEG-NH2) modified GO nanosheets with interface property heterogeneity using two approaches, physical adsorption and chemical crosslinking. It is demonstrated that nuclease P1 could be stable immobilized on the surface of pristine GO by physical adsorption and on the edge of modified GO nanosheets by chemical crosslinking. The resultant loading capacity of nuclease P1 on pristine GO is as high as 6.45mg/mg as a consequence of strong electrostatic and hydrophobic interactions between the enzyme and carrier. However, it is determined that the acid resistance, thermal stability, reusability and degradation efficiency of the immobilized enzyme on PEG-NH2-modified GO are obviously improved compared to those of the enzyme immobilized on pristine GO. The enhanced catalytic behavior demonstrates that GO and its derivatives have great potential in efficient biocatalytic systems. Keywords: Enzyme immobilization; Graphene oxide; Interface; Modification; Nuclease P(1). Related products Abbreviation: 4-arm PEG-NH2 Name: 4-arm Poly (ethylene glycol) amine For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • Combined Adsorption and Covalent Linking of Paclitaxel on Functionalized Nano-Graphene Oxide for Inhibiting Cancer Cells
    Combined Adsorption and Covalent Linking of Paclitaxel on Functionalized Nano-Graphene Oxide for Inhibiting Cancer Cells December 9,2022.
    ACS Omega. 2018 Feb 28;3(2):2396-2405. doi: 10.1021/acsomega.7b02022. Epub 2018 Feb 27. Combined Adsorption and Covalent Linking of Paclitaxel on Functionalized Nano-Graphene Oxide for Inhibiting Cancer Cells Wei Zhuang, Linjiao He, Kai Wang, Bo Ma, Lei Ge, Zhenfu Wang, Jinsha Huang, Jinglan Wu, Qi Zhang, Hanjie Ying Abstract Developing targeted delivery nanosystems for delivering chemotherapeutic anticancer drugs specifically to cancerous tissues with improvement in the specificity of drugs for different cancer cells can result in high therapeutic efficacy and low toxicity in healthy tissues. Herein, we proposed the synthesis of a multifunctional nanodelivery system, folic acid (FA) decorating nanographene oxide (nGO) functionalized with poly(ethylene glycol) (PEG), called pGO-FA, with good biocompatibility and good delivering performance of a hydrophobic water-insoluble anticancer drug of paclitaxel (PTX). 4-br-PEG-NH2, FA, and PTX were attached to PEG-functionalized nGO (pGO) through a combined chemical and physical force to form a nanosized complex, pGO-FA-PTX, defined as the nanodrug system. WST-8 assay in vitro illustrated that pGO-FA-PTX inhibited A2780 cells in a concentration-dependent manner. Cell viability was kept high to 60% when treated with 200 nM of free PTX. However, pGO-FA-PTX with the same dose of PTX (cell viability less than 30%) had double the cytotoxicity effect compared to free PTX. Furthermore, fluorescence observation demonstrated that pGO-FA-PTX exhibited an improved efficiency in killing A2780 cells due to the special affinity between FA and FA receptor, which has high expression in cancer cells. The strategy and method used in this study could be effective in improving both the bioavailability of PTX and therapy efficiency. Related products Abbreviation: 4-arm PEG-NH2 Name: 4-arm Poly(ethylene glycol) amine For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
first page 1 2 3 4 5 6 7 8 9 10 last page

A total of 14 pages

Copyright © XIAMEN SINOPEG BIOTECH CO., LTD. All Rights Reserved.

Home

Products

News

contact