News
  • An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy
    An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy April 24,2023.
    Nanoscale. 2018 Mar 1;10(9):4432-4441. doi: 10.1039/c7nr06874c. An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy Fujin Ai, Na Wang, Xiaoman Zhang, Tianying Sun, Qi Zhu, Wei Kong, Feng Wang, Guangyu Zhu Abstract Upconversion nanoparticles (UCNPs) are widely utilized for photodynamic therapy (PDT) due to their specific upconverting luminescence that utilizes near infrared (NIR) light to excite photosensitizers (PSs) for PDT. The efficiency of UCNP-based PDT will be improved if the cancer-targeting property of nanomedicine is enhanced. Herein, we employed the pH low insertion peptide (pHLIP), a cancer-targeting moiety, to functionalize an 808 nm excited UCNP-based nanoplatform that has a minimized over-heating effect to perform PDT. pHLIP can bring cargo specifically into cancer cells under an acidic environment, realizing the effective active-targeting abilities to cancer cells or tumor due to acidosis. The pHLIP-functionalized nanoplatform was assembled and well characterized. The nanoplatform shows an efficient NIR-irradiated PDT effect in cancer cells, especially under a slightly acidic condition that mimics the tumor microenvironment, and this effectiveness is attributed to the targeting properties of pHLIP to cancer cells under acidic conditions that favor the entry of the nanoplatform. Furthermore, the pHLIP-functionalized nanoplatform shows a favorable safety profile in mice with a high maximum tolerated dose (MTD), which may broaden the availability of administration in vivo. The efficient in vivo antitumor activity is achieved through intratumor injection of the nanoplatform followed by NIR irradiation on the breast tumor. The nanoparticles are largely accumulated in the tumor site, revealing the excellent tumor-targeting properties of the pHLIP-functionalized nanoplatform, which ensures efficient PDT in vivo. Moreover, the nanoparticles have a long retention time in the bloodstream, indicating their stability in vivo. Overall, we provide an example of a UCNP-based nanosystem with tumor-targeting properties to perform efficient PDT both in vitro and in vivo. Related products Abbreviation: mPEG-NH2 Name: Methoxypoly(ethylene glycol) amine For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • Fluorinated polyhedral oligomeric silsesquioxanes end-capped poly(ethylene oxide) giant surfactants: precise synthesis and interfacial behaviors
    Fluorinated polyhedral oligomeric silsesquioxanes end-capped poly(ethylene oxide) giant surfactants: precise synthesis and interfacial behaviors April 20,2023.
    Polymer, Volume 186, 9 January 2020, 122055 https://doi.org/10.1016/j.polymer.2019.122055 Fluorinated polyhedral oligomeric silsesquioxanes end-capped poly(ethylene oxide) giant surfactants: precise synthesis and interfacial behaviors Xian Xu , Yu Shao , Weijie Wang, Liping Zhu, Hao Liu, Shuguang Yang Abstract Interfacial behavior of giant surfactants with precisely tethered molecular nanoparticles (MNPs) is an important topic. In this article, by the combination of hydrosilylation, esterification, and CuAAC ‘‘click’’ chemistry, poly(ethylene oxide) (PEO) chains were end-capped with particle-like aryl-trifluorovinyl ether functionalized polyhedral oligomeric silsesquioxane (FVPOSS) to construct “one-head one-tail” and “bola-form” giant surfactants. The giant surfactants are spread at air/water interface, and surface pressure-area (π-A) isotherms reveal their interfacial behaviors under compression. Atomic force microscope (AFM) images indicate that the giant surfactants show fractal growth behavior after transferred to the silicon substrate at different surface pressure through the procedure of Langmuir-Blodgett (LB) film deposition. The results are useful for understanding the assembly of giant surfactants at the interface and developing of nanostructured functional materials. Related products Abbreviation: mPEG-N3 Name: Methoxypoly(ethylene glycol) azide Abbreviation: N3-PEG-N3 Name: α,ω-Diazido poly(ethylene glycol) For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • Optimizing Multistep Delivery of PEGylated Tumor-Necrosis-Factor-Related Apoptosis-Inducing Ligand-Toxin Conjugates for Improved Antitumor
    Optimizing Multistep Delivery of PEGylated Tumor-Necrosis-Factor-Related Apoptosis-Inducing Ligand-Toxin Conjugates for Improved Antitumor April 17,2023.
    Bioconjug Chem. 2017 Aug 16;28(8):2180-2189. doi: 10.1021/acs.bioconjchem.7b00327. Epub 2017 Aug 1. Optimizing Multistep Delivery of PEGylated Tumor-Necrosis-Factor-Related Apoptosis-Inducing Ligand-Toxin Conjugates for Improved Antitumor Xiaoyue Wei, Xiaoyue Yang, Wenbin Zhao, Yingchun Xu, Liqiang Pan, Shuqing Chen Abstract Although TRAIL (tumor-necrosis-factor (TNF)-related apoptosis-inducing ligand) has been considered a promising broad-spectrum antitumor agent, its further application was limited by poor drug delivery and TRAIL-resistant tumors. A three-step drug delivery strategy was applied to TRAIL for solving these two obstacles in the form of PEG-TRAIL-MMAE (Monomethyl Auristatin E). PEGylation of TRAIL in the first step was carried out to improve its in vivo pharmacokinetics, while the interaction between TRAIL conjugates with death receptors in the second step was designed to activate the TRAIL extrinsic apoptosis pathway, and the further release of MMAE from the lysosome was the third step for introducing another apoptosis pathway to overcome TRAIL resistance in some tumors. Herein, in order to reach a balance among the three steps, the PEG/MMAE ratio was optimized for PEG-TRAIL-MMAE conjugates. PEG-TRAIL-MMAE conjugates with various PEG/MMAE ratios were prepared and compared with each other regarding their pharmacokinetics (PK) and pharmacodynamics (PD). As a result, PEG-TRAIL-MMAE conjugates with a PEG/MMAE ratio of 1:2 showed prolonged half-life in rats (6.8 h), and the best antitumor activity in vitro (IC50 0.31 nM) and in vivo while no sign of toxicity in xenograft models, suggesting it as a promising multistep drug delivery and antitumor strategy after optimization. Related products Abbreviation: mPEG-MAL Name: Methoxypoly(ethylene glycol) maleimide For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • SINOEPG's invitation | 2nd LNP Formulation & Process Development Summit
    SINOEPG's invitation | 2nd LNP Formulation & Process Development Summit April 11,2023.
    The 2nd LNP Formulation & Process Development Summit is returning to Boston to welcome 350+ LNP experts for sharing, learning and networking to turbocharge next generation of LNP development. Welcome to visit SINOPEG at booth no.27. 2nd LNP Formulation & Process Development Summit | April 2023 (lnp-formulation-process-development-pharma.com) #event #Boston Xiamen Sinopeg Biotech Co., Ltd. is dedicated to drug delivery systems and related medical device business, focusing on the research, development, production and sales of high-end drug delivery carriers/auxiliary materials/APIs, medical materials, including but not limited to polyethylene glycol derivatives, lipid products, blood sugar control drug modifiers, block copolymers, ADC/ProTAC linkers, biodegradable polymers, exosomes, viral-like particles, as well as providing CDMO and solution services. These products are widely used in long-acting protein/peptide drugs, COVID-19 mRNA vaccines, small nucleic acid drugs, blood sugar control drugs, macromolecular micelle drugs, liposome drugs, gene therapy drugs, immunosuppressants, ADC drugs, ProTAC drugs, medical hydrogels, and other fields, placing the company in a leading position in the industry.
    View More
  • Hetero-modification of TRAIL trimer for improved drug delivery and in vivo antitumor activities
    Hetero-modification of TRAIL trimer for improved drug delivery and in vivo antitumor activities March 29,2023.
    Sci Rep. 2015 Oct 8;5:14872. doi: 10.1038/srep14872. Hetero-modification of TRAIL trimer for improved drug delivery and in vivo antitumor activities Li-Qiang Pan, Wen-Bin Zhao, Jun Lai, Ding Ding, Xiao-Yue Wei, Yang-Yang Li, Wen-Hui Liu, Xiao-Yue Yang, Ying-Chun Xu, Shu-Qing Chen Abstract Poor pharmacokinetics and resistance within some tumor cell lines have been the major obstacles during the preclinical or clinical application of TRAIL (tumor-necrosis-factor (TNF)-related apoptosis-inducing ligand). The half-life of TRAIL114-281 (114 to 281 amino acids) was revealed to be no more than 30 minutes across species. Therefore maleimido activated PEG (polyethylene glycol) and MMAE (Monomethyl Auristatin E) were applied to site-specifically conjugate with the mutated cysteines from different monomers of TRAIL successively, taking advantage of steric effects involved within TRAIL mutant conjugations. As a result, TRAIL trimer was hetero-modified for different purposes. And the resulting PEG-TRAIL-vcMMAE conjugate exhibited dramatically improved half-life (11.54 h), favourable in vivo targeting capability and antitumor activities while no sign of toxicity in xenograft models, suggesting it's a viable therapeutic and drug delivery strategy. Related products Abbreviation: mPEG-MAL Name: Methoxypoly(ethylene glycol) maleimide For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • Effect of protein immunogenicity and PEG size and branching on the anti-PEG immune response to PEGylated proteins
    Effect of protein immunogenicity and PEG size and branching on the anti-PEG immune response to PEGylated proteins March 27,2023.
    Process Biochemistry. Volume 52, January 2017, Pages 183-191 https://doi.org/10.1016/j.procbio.2016.09.029 Effect of protein immunogenicity and PEG size and branching on the anti-PEG immune response to PEGylated proteins Xue Wan, Juankun Zhang, Weili Yu, Lijuan Shen, Shaoyang Ji, Tao Hu Abstract PEGylation has successfully improved the pharmacological properties of therapeutic proteins. However, polyethylene glycol (PEG) has been burdened by immunogenicity that renders a negative clinical effect on therapeutic proteins. The anti-PEG immune response to PEGylated proteins possibly depends on the nature of proteins and the conjugated methoxy PEG (mPEG). Thus, it is necessary to investigate the effects of protein immunogenicity, the extent of PEGylation, the molecular weight (Mw), and the branching of mPEG on the anti-PEG immune response. Ovalbumin, tetanus toxoid (TT), TT–TT conjugate, and TT–bovine serum albumin conjugate were used as target proteins. PEGylated proteins with different extents of PEGylation were obtained by fractionation of the PEGylated TT with size exclusion chromatography. The PEGylated proteins with different Mw and branching of mPEG were obtained by modification of TT with linear mPEG (5 kDa and 20 kDa) and branched mPEG (20 kDa). The PEGylated proteins elicited high levels of anti-PEG antibodies (predominantly IgM and IgG1). The anti-PEG immune response depended on the immunogenicity of proteins, the extent of PEGylation, and the Mw of mPEG. In contrast, branching of mPEG had an insignificant effect on the anti-PEG immune response to the PEGylated proteins. Related products Abbreviation: mPEG-MAL Name: Methoxypoly(ethylene glycol) maleimide For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • A bioengineered arginine-depleting enzyme as a long-lasting therapeutic agent against cancer
    A bioengineered arginine-depleting enzyme as a long-lasting therapeutic agent against cancer March 24,2023.
    Appl Microbiol Biotechnol. 2020 May;104(9):3921-3934. doi: 10.1007/s00253-020-10484-4. Epub 2020 Mar 6. A bioengineered arginine-depleting enzyme as a long-lasting therapeutic agent against cancer Sai-Fung Chung, Chi-Fai Kim, Suet-Ying Tam, Man-Chung Choi, Pui-Kin So, Kwok-Yin Wong, Yun-Chung Leung, Wai-Hung Lo Abstract L-Arginine (L-Arg) depletion has attracted great attention in cancer therapy. Although two types of arginine-depleting enzymes, arginine deiminase (ADI) and human arginase I, are undergoing clinical trials, random site of PEGylation, low efficacy of heavy metal as co-factor, and immunogenicity limit the performance of these drugs and cause difficulty in a homogeneous production. Here we screened ten catalytic metal ions and have successfully produced a site-specific mono-PEGylated human arginase I mutant by conjugating the Cys45 residue to PEG-maleimide to minimize the decrease in activity and produce a homogeneous product. The catalytic efficiency trend of metal ion-enriched human arginase I mutant (HAI) was Co2+ > Ni2+ ≫ Mn2+. The overall kcat/KM values of Co-HAI and Ni-HAI were higher than Mn-HAI by ~ 8.7- and ~ 5.2-folds, respectively. Moreover, the results of enzyme kinetics and circular dichroism spectrometry demonstrated that the 20 or 40 kDa linear and branched PEG attached on the HAI surface did not affect the enzyme activity and the protein secondary structures. In vitro studies showed that both Co-HAI-PEG20L and Ni-HAI-PEG20L inhibited the growth of eight types of cancer cell lines. The pharmacodynamic study in mice demonstrated that the i.p. administration of Co-HAI-PEG20L at 13 mg/kg and Ni-HAI-PEG20L at 15 mg/kg was able to maintain a L-Arg level below its detection limit for over 120 h after one injection. The body weights of mice could return to normal levels within 5 days after injection, showing that the doses were well-tolerated. Therefore, both the Ni-HAI-PEG20L and Co-HAI-PEG20L are promising candidates for cancer therapy. KEY POINTS: • Mono-PEGylation applied on human arginase I mutant (HAI) successfully. • The catalytic efficiency of Co- and Ni-enriched HAI was higher than the wild type. • At least eight types of cancer cell lines were inhibited by Co- and Ni-HAI-PEG20L. • Co- and Ni-HAI-PEG20L were able to achieve weekly depletion of L-Arg. Graphical abstract. Keywords: Divalent metal ions; Human arginase I; L-Arg; Pharmacodynamics; Site-specific mono-PEGylation. Related products Abbreviation: mPEG-MAL Name: Methoxypoly(ethylene glycol) maleimide For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
  • Thixotropic Supramolecular Pectin-Poly(Ethylene Glycol) Methacrylate (PEGMA) Hydrogels
    Thixotropic Supramolecular Pectin-Poly(Ethylene Glycol) Methacrylate (PEGMA) Hydrogels March 22,2023.
    Polymers (Basel). 2016 Nov 18;8(11):404. doi: 10.3390/polym8110404. Thixotropic Supramolecular Pectin-Poly(Ethylene Glycol) Methacrylate (PEGMA) Hydrogels Siew Yin Chan, Wee Sim Choo, David James Young, Xian Jun Loh Abstract Pectin is an anionic, water-soluble polymer predominantly consisting of covalently 1,4-linked α-d-galacturonic acid units. This naturally occurring, renewable and biodegradable polymer is underutilized in polymer science due to its insolubility in organic solvents, which renders conventional polymerization methods impractical. To circumvent this problem, cerium-initiated radical polymerization was utilized to graft methoxy-poly(ethylene glycol) methacrylate (mPEGMA) onto pectin in water. The copolymers were characterized by ¹H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA), and used in the formation of supramolecular hydrogels through the addition of α-cyclodextrin (α-CD) to induce crosslinking. These hydrogels possessed thixotropic properties; shear-thinning to liquid upon agitation but settling into gels at rest. In contrast to most of the other hydrogels produced through the use of poly(ethylene glycol) (PEG)-grafted polymers, the pectin-PEGMA/α-CD hydrogels were unaffected by temperature changes. Keywords: cerium; pectin; poly(ethylene glycol) methacrylate; supramolecular hydrogel; α-cyclodextrin. Related products Abbreviation: mPEG-MA Name: Methoxypoly(ethylene glycol) methacrylate For more product information, please contact us at: US Tel: 1-844-782-5734 US Tel: 1-844-QUAL-PEG CHN Tel: 400-918-9898 Email: sales@sinopeg.com
    View More
first page 1 2 3 4 5 6 7 8 9 10 last page

A total of 20 pages

Copyright © XIAMEN SINOPEG BIOTECH CO., LTD. All Rights Reserved.

Home

Products

News

contact